Mathe Vektorrechnung Winkel zwischen Vektoren

Winkel zwischen zwei Vektoren

Mit dem Skalarprodukt kann man den Winkel zwischen zwei Vektoren berechnen.

Folgende Formel nutzt man zum Berechnen:

$\cos(\gamma) = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|}$

$\gamma = \cos^{-1}\left(\frac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|}\right)$
i

Vorgehensweise

  1. Skalarprodukt berechnen
  2. Beträge der Vektoren berechnen
  3. Ergebnisse in die Formel einsetzen

Beispiel

Berechne den Winkel zwischen $\vec{a}=\begin{pmatrix}2\\6\\-3\end{pmatrix}$ und $\vec{b}=\begin{pmatrix}2\\3\\5\end{pmatrix}$.

  1. Skalarprodukt berechnen

    $\vec{a}\cdot\vec{b}$ $=\begin{pmatrix}2\\6\\-3\end{pmatrix}\cdot\begin{pmatrix}2\\3\\5\end{pmatrix}$ $=2\cdot2+6\cdot3-3\cdot5$ $=7$
  2. Beträge der Vektoren berechnen

    $|\vec{a}|=\sqrt{2^2+6^2+(-3)^2}$ $=7$

    $|\vec{b}|=\sqrt{2^2+3^2+5^2}$ $=\sqrt{38}$
  3. Ergebnisse in die Formel einsetzen

    $\cos(\gamma) = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}|\cdot|\vec{b}|}$

    $\cos(\gamma) = \frac{7}{7\cdot\sqrt{38}}$ $= \frac{1}{\sqrt{38}}$

    $\gamma = \cos^{-1}\left(\frac{1}{\sqrt{38}}\right)$ $\approx80,66°$