Rules for definite integrals
When solving definite integrals, there are some rules that you should be able to apply.
Same lower and upper limit
$\int_a^a f(x) \, \mathrm{d}x=0$Reversing the limits
$\int_a^b f(x) \, \mathrm{d}x$ $=-\int_b^a f(x) \, \mathrm{d}x$Additive interval
$\int_a^b f(x) \, \mathrm{d}x + \int_b^c f(x) \, \mathrm{d}x$ $=\int_a^c f(x) \, \mathrm{d}x$
The constant factor rule and sum rule for indefinite integrals are also valid for the definite integrals.
Constant factor rule
$\int_a^b k\cdot f(x) \, \mathrm{d}x$ $= k\cdot \int_a^b f(x) \, \mathrm{d}x$Sum rule
$\int_a^b (f(x)+g(x)) \, \mathrm{d}x$ $= \int_a^b f(x) \, \mathrm{d}x + \int_a^b g(x) \, \mathrm{d}x$