Calculating indefinite integrals
A indefinite integral can be calculated with the fundamental theorem of calculus by inserting and subtracting the limits of integration $a$ and $b$ into an antiderivative of $f$:
$\int_a^b f(x) \, \mathrm{d}x$ $= [F(x) + C]_a^b$ $= F(b) - F(a)$
i
Method
- Calculate antiderivative
- Insert limits of integration into antiderivative
- Calculate integral: $F(b)-F(a)$
Example
$\int_\color{red}{2}^\color{blue}{3} 3x^2 \, \mathrm{d}x$
-
Calculate antiderivative
Here the power rule is applied.
$F(x)=\int 3x^2=x^3$ -
Insert limits of integration into antiderivative
Now $x$ of the antiderivative is replaced with the limits of integration of the integral.
$F(\color{red}{a})=F(\color{red}{2})=\color{red}{2}^3$
$F(\color{blue}{b})=F(\color{blue}{3})=\color{blue}{3}^3$ -
Calculate integral
Now this only has to be inserted in the formula.
$\int_\color{red}{a}^\color{blue}{b} f(x) \, \mathrm{d}x$ $= [F(x) + C]_\color{red}{a}^\color{blue}{b}$ $= F(\color{blue}{b}) - F(\color{red}{a})$
$\int_\color{red}{2}^\color{blue}{3} 3x^2 \, \mathrm{d}x$ $= [x^3]_\color{red}{2}^\color{blue}{3}$ $= \color{blue}{3}^3 - \color{red}{2}^3$ $=27-8$ $=19$