Sum rule and difference rule
The Sum- and difference rule states that a sum or a difference is integrated termwise.
Sum rule
$\int (f(x)+g(x)) \, \mathrm{d}x =$ $\int f(x) \, \mathrm{d}x + \int g(x) \, \mathrm{d}x$
Example
$f(x)=x^4+x^3$
Split function into subfunctions
$g(x)=x^4$ and $h(x)=x^3$Integrate subfunctions
$\int x^4=\frac15x^5$ and $\int x^3=\frac14x^4$- $\int (x^4+x^3)$ $=\int x^4+ \int x^3$ $=\frac15x^5+\frac14x^4\color{purple}{+C}$
i
Hint
If it is, like in this case, an indefinite integral, then the constant of integration $\color{purple}{C}$ must be set at the end.
Difference rule
$\int (f(x)-g(x)) \, \mathrm{d}x =$ $\int f(x) \, \mathrm{d}x - \int g(x) \, \mathrm{d}x$
Example
$f(x)=x^4-x^3$
Split function into subfunctions
$g(x)=x^4$ und $h(x)=x^3$Integrate subfunctions
$\int x^4=\frac15x^5$ and $\int x^3=\frac14x^4$- $\int (x^4-x^3)$ $=\int x^4- \int x^3$ $=\frac15x^5-\frac14x^4\color{purple}{+C}$