Integration by substitution
Like the chain rule when taking the derivative, integrating composite functions uses integration by substitution.
i
Method
- Substitution: replace part of the function with $z$
- Adapt $\mathrm{d}x$ to $\mathrm{d}z$
- Integrate
- Substitute back
Converting the differential is done by the formula
$\frac{\mathrm{d}z}{\mathrm{d}x}=z'$
Example
$\int (3x+2)^3 \, \mathrm{d}x$
-
Substitution
We set $z$ in order to replace the difficult part.$z=3x+2$
Insert $z$ in the function
$\int (\color{red}{3x+2})^3 \, \mathrm{d}x$
$\int \color{red}{z}^3 \, \mathrm{d}x$
-
Adjust differential
We change the differential with the formula:$\frac{\mathrm{d}z}{\mathrm{d}x}=z'$
Take the derivative of $z$ for $z'$$z'=(3x+2)'=3$
Insert$\frac{\mathrm{d}z}{\mathrm{d}x}=3$
Convert for dx$\mathrm{d}x=\frac{\mathrm{d}z}{3}$
-
Integrate
Insert the new differential into the integral.$\int z^3 \, \color{red}{\mathrm{d}x}$
$\int z^3 \, \color{red}{\frac{\mathrm{d}z}{3}}$
Rewrite the integral and integrate using known integration rules.$\int \frac13 z^3 \, \mathrm{d}z$ $=\frac1{12} z^4+C$
-
Substitute back
Now you are almost done. $z$ only has to be replaced again.$z=3x+2$
$\frac1{12} \color{red}{z}^4+C$ $=\frac1{12}(\color{red}{3x+2})^4+C$
So the solution is:$\int (3x+2)^3 \, \mathrm{d}x$ $=\frac1{12}(3x+2)^4+C$