Integration by linear substitution
When integrating composite functions of the form $f(g(x))$ with a linear inner function, one uses the integration by linear substitution:
$\int f(mx+n) \, \mathrm{d}x$ $=\frac1m F(mx+n)+C$
!
Remember
Integration by linear substitution may only be used if the inner function $g(x)$ is a linear function (i.e.: $g(x)=mx+n$).
$f(g(x))$ $=f(mx+n)$
$f(g(x))$ $=f(mx+n)$
i
Hint
In addition to the integration by linear substitution, there is the integration by nonlinear substitution for arbitrarily composite functions.
Linear substitution is actually only a special case of general substitution, but it is sufficient for most tasks.
Linear substitution is actually only a special case of general substitution, but it is sufficient for most tasks.
Examples
$\int (2x+4)^2 \, \mathrm{d}x$
-
Split function into subfunctions
$f(x)=x^2$ and $g(x)=\color{red}{2}x+4$
$\color{red}{m=2}$ -
Integrate $f(x)$
Apply the power rule
$F(x)=\color{blue}{\frac13}x\color{blue}{^3}$ -
Insert
$\int f(mx+n) \, \mathrm{d}x$ $=\frac{1}{\color{red}{m}} \cdot\color{blue}{F}(mx+n)+C$
$\int (2x+4)^2 \, \mathrm{d}x$ $=\frac{1}{\color{red}{2}} \cdot \color{blue}{\frac13}(2x+4)^\color{blue}{3}+C$ $=\frac16(2x+4)^3+C$
$\int e^{2x} \, \mathrm{d}x$
-
Split function into subfunctions
$f(x)=e^x$ and $g(x)=\color{red}{2}x$
$\color{red}{m=2}$ -
Integrate $f(x)$
Apply the power rule
$F(x)=\color{blue}{e}^x$ -
Insert
$\int f(mx+n) \, \mathrm{d}x$ $=\frac{1}{\color{red}{m}} \cdot\color{blue}{F}(mx+n)+C$
$\int e^{2x} \, \mathrm{d}x$ $=\frac{1}{\color{red}{2}} \cdot \color{blue}{e}^{2x}+C$
i
Hint
For exponential functions (second example) there is a "trick" to solve the integral even faster:
The antiderivative of an exponential function with linear inner function is obtained by dividing by the derivative of the inner function.
$\int e^{g(x)} \, \mathrm{d}x=\frac{e^{g(x)}}{g'(x)}+C$
Example: $\int e^{2x} \, \mathrm{d}x=\frac{e^{2x}}{2}+C$
The antiderivative of an exponential function with linear inner function is obtained by dividing by the derivative of the inner function.
$\int e^{g(x)} \, \mathrm{d}x=\frac{e^{g(x)}}{g'(x)}+C$
Example: $\int e^{2x} \, \mathrm{d}x=\frac{e^{2x}}{2}+C$