Math Circles and spheres Spheres and lines

Spheres and lines

There are three possible relative positions for a sphere and a line in space.

tangent, secant, passant
!

Remember

  • A passant is a straight line that has no point in common with the sphere.

  • A tangent has exactly one point in common.

  • A secant has two different points in common with the sphere.

A sphere and a line can therefore have one, two or no common point.

The individual coordinates are used in the equation of a sphere to calculate the intersection points.

i

Method

  1. Write out coordinates of $g$
  2. Insert and solve equations in the equation of a sphere
  3. Insert $r$ into the line to get intersection(s)

Example

$g: \vec{x} = \begin{pmatrix} 5 \\ 6 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$

$k: (x+1)^2+(y-2)^2$ $+(z-1)^2=17$

  1. Break $g$ into 3 equations

    We replace $\vec{x}$ and write out the respective coordinates as our own equation.

    $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 5 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$

    1. $x=5+3r$
    2. $y=6+2r$
    3. $z=5+2r$
  2. Insert coordinates

    The equations are now used in the equation of a sphere for $x$, $y$ and $z$.

    $(x+1)^2+(y-2)^2$ $+(z-1)^2=17$

    $(5+3r+1)^2$ $+(6+2r-2)^2$ $+(5+2r-1)^2=17$

    $(6+3r)^2$ $+(4+2r)^2$ $+(4+2r)^2=17$

    Use binomial theorem to resolve parentheses

    $36+36r+9r^2$ $+16+16r+4r^2$ $+16+16r+4r^2=17$

    $17r^2+68r+68=17\quad|-17$

    $17r^2+68r+51=0\quad|:17$

    $r^2+4r+3=0$

    Use quadratic formula I to solve quadratic equation.

    $r_{1,2}=-\frac{p}2\pm\sqrt{(\frac{p}2)^2-q}$
    $r_{1,2}=-2\pm\sqrt{2^2-3}$
    $r_{1,2}=-2\pm1$

    $r_{1}=-1$ and $r_{2}=-3$

  3. Insert $r$

    The two calculated $r$ are inserted into the equation of a line in order to obtain the intersection points.

    $\vec{OS_1} = \begin{pmatrix} 5 \\ 6 \\ 5 \end{pmatrix} - 1 \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$ $=\begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$

    $\vec{OS_2} = \begin{pmatrix} 5 \\ 6 \\ 5 \end{pmatrix} - 3 \cdot \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$ $=\begin{pmatrix} -4 \\ 0 \\ -1 \end{pmatrix}$

    It is a secant that intersects the sphere at $S_1(2|4|3)$ and $S_2(-4|0|-1)$.