Mathe Bruchrechnung Multiplikation und Division

Multiplikation und Division

Multiplizieren von Brüchen

Brüche werden multipliziert, indem man Zähler mit Zähler und Nenner mit Nenner multipliziert. Allgemein gilt:

$\frac{a}{b}\cdot\frac{c}{d}=\frac{a\cdot c}{b\cdot d}$
i

Tipp

Man multipliziert einen Bruch mit einer rationalen Zahl, indem man den Zähler mit der Zahl multipliziert und den Nenner beibehält.

$\frac{a}{b}\cdot c=\frac{a\cdot c}{b}$
i

Tipp

Manchmal ist es schneller, noch vor dem ausrechnen zu kürzen. Dazu einfach direkt über Kreuz kürzen. Beispiel:$\frac{7}{10}\cdot\frac{15}{14}=\frac{1\cdot\rlap{\backslash}\color{green}{7}}{2\cdot\rlap{\backslash}\color{blue}{5}}\cdot\frac{3\cdot\rlap{\backslash}\color{blue}{5}}{2\cdot\rlap{\backslash}\color{green}{7}}$ $=\frac34$

Wem die andere Variante leichter fällt, kann auch weiterhin so rechnen wie im Beispiel weiter unten.

Beispiele

Ausrechnen und ggf. kürzen

  • $\frac{7}{10}\cdot\frac{15}{14}=\frac{7\cdot15}{10\cdot14}=\frac{\rlap{\backslash}7\cdot3\cdot\rlap{\backslash}5}{2\cdot\rlap{\backslash}5\cdot2\cdot\rlap{\backslash}7}=\frac34$

  • $\frac{1}{16}\cdot4=\frac{4}{16}=\frac{\rlap{\backslash}4}{4\cdot\rlap{\backslash}4}=\frac{1}{4}$

  • $\frac{a+b}{x}\cdot\frac{a-b}{x}=\frac{(a+b)\cdot(a-b)}{x\cdot x}$ $=\frac{a^2-b^2}{x^2}$ (Binomische Formeln)

Dividieren von Brüchen

Man dividiert durch einen Bruch, indem man mit dem Kehrwert des Bruches multipliziert. Allgemein gilt:

$\frac{a}{b}:\frac{c}{d}=\frac{a}{b}\cdot\frac{d}{c}=\frac{a\cdot d}{b\cdot c}$
i

Tipp

Man dividiert einen Bruch durch eine rationale Zahl (außer 0), indem man den Zähler beibehält und den Nenner mit der Zahl multipliziert.

$\frac{a}{b}:c=\frac{a}{b\cdot c}$

Beispiele

Ausrechnen und ggf. kürzen

  • $\frac{5}{16}:\frac{1}{4}=\frac{5}{16}\cdot\frac41=\frac{20}{16}$ $=\frac{5\cdot\rlap{\backslash}4}{4\cdot\rlap{\backslash}4}=\frac54$

  • $\frac{2}{5}:3=\frac{2}{5\cdot3}=\frac{2}{15}$

  • $\frac{3a^2}{2b^2}:\frac{2a}{3b}=\frac{3a^2}{2b^2}\cdot\frac{3b}{2a}$ $=\frac{9a^2b}{4ab^2}=\frac{9a}{4b}$

Wie du mit Brüchen rechnest - DIE Rechenregeln: Multiplizieren, Dividieren, Addieren, Subtrahieren

Kooperation mit dem Kanal von Mister Mathe