Multiplication and division
Multiply fractions
Fractions are multiplied by multiplying numerators with numerators and denominators with denominators. In general:
$\frac{a}{b}\cdot\frac{c}{d}=\frac{a\cdot c}{b\cdot d}$
i
Hint
You multiply a fraction with a rational number by multiplying the numerator with the number and maintaining the denominator.
$\frac{a}{b}\cdot c=\frac{a\cdot c}{b}$
$\frac{a}{b}\cdot c=\frac{a\cdot c}{b}$
i
Hint
Sometimes, it is faster to shorten even before calculating. Simply, shorten crosswise. Example:$\frac{7}{10}\cdot\frac{15}{14}=\frac{1\cdot\rlap{\backslash}\color{green}{7}}{2\cdot\rlap{\backslash}\color{blue}{5}}\cdot\frac{3\cdot\rlap{\backslash}\color{blue}{5}}{2\cdot\rlap{\backslash}\color{green}{7}}$ $=\frac34$
If the other option is easier, you can continue to calculate as in the example below.
If the other option is easier, you can continue to calculate as in the example below.
Examples
Calculate and shorten if necessary
- $\frac{7}{10}\cdot\frac{15}{14}=\frac{7\cdot15}{10\cdot14}=\frac{\rlap{\backslash}7\cdot3\cdot\rlap{\backslash}5}{2\cdot\rlap{\backslash}5\cdot2\cdot\rlap{\backslash}7}=\frac34$
- $\frac{1}{16}\cdot4=\frac{4}{16}=\frac{\rlap{\backslash}4}{4\cdot\rlap{\backslash}4}=\frac{1}{4}$
- $\frac{a+b}{x}\cdot\frac{a-b}{x}=\frac{(a+b)\cdot(a-b)}{x\cdot x}$ $=\frac{a^2-b^2}{x^2}$ (Binomial formulas)
Divide fractions
You divide a fraction by multiplying the reciprocal of the fraction. In general:
$\frac{a}{b}:\frac{c}{d}=\frac{a}{b}\cdot\frac{d}{c}=\frac{a\cdot d}{b\cdot c}$
i
Hint
You divide a fraction with a rational number (except 0) by keeping the numerator and multiplying the denominator with the number.
$\frac{a}{b}:c=\frac{a}{b\cdot c}$
$\frac{a}{b}:c=\frac{a}{b\cdot c}$
Examples
Calculate and shorten if necessary
- $\frac{5}{16}:\frac{1}{4}=\frac{5}{16}\cdot\frac41=\frac{20}{16}$ $=\frac{5\cdot\rlap{\backslash}4}{4\cdot\rlap{\backslash}4}=\frac54$
- $\frac{2}{5}:3=\frac{2}{5\cdot3}=\frac{2}{15}$
- $\frac{3a^2}{2b^2}:\frac{2a}{3b}=\frac{3a^2}{2b^2}\cdot\frac{3b}{2a}$ $=\frac{9a^2b}{4ab^2}=\frac{9a}{4b}$