Curve sketching of the natural exponential function
Even with natural exponential functions a curve sketching can be done
!
Remember
When setting to zero and calculating an equation with $e$, keep in mind that $e$ to the power of anything never becomes zero.
$e^{x}>0$ with $x\in\mathbb{R}$
$e^{x}>0$ with $x\in\mathbb{R}$
Example
Examine $f(x)=x\cdot e^x$ on the following properties:
- Zeros
- Extrema
- Inflection point
-
Calculate derivative
To compute the drivative, use the product rule.$f(x)=x\cdot e^x$
$f'(x)=x\cdot e^x+e^x$ $=e^x(x+1)$
$f''(x)=x\cdot e^x+e^x+e^x$ $=e^x(x+2)$
$f'''(x)=x\cdot e^x+e^x+e^x+e^x$ $=e^x(x+3)$
-
Zeros
Calculating Zeros: Set function equal to zero$f(x)=0$
$x\cdot e^x=0$Product of zero: A product becomes zero if one of the factors becomes zero.
$e^x>0$ (can never be zero!) and
$x_N=0$ -
Extrema
Calculate extrema: Set first derivative equal to zero
$f'(x)=0$
$e^x(x+1)=0$$e^x>0$ (can never be zero!) and
$x+1=0\quad|-1$
$x_E=-1$use suspicious points for extrema in the second derivative test:
$f''(-1)=e^{-1}>0$ => minimumCalculate the y-coordinate and specify the minimum:
$f(-1)$ $=-1\cdot e^{-1}$ $=-e^{-1}$ $\approx-0.37$
$T(-1|-0.37)$ -
Inflection point
Calculate inflection point: Set second derivative equal to zero
$f''(x)=0$
$e^x(x+2)=0$$e^x>0$ (can never be zero!) and
$x+2=0\quad|-2$
$x_W=-2$Insert point suspected of having an inflection point in the third derivative:
$f'''(-2)=e^{-2}\neq0$ => Inflection pointCalculate y-coordinate and specify inflection point:
$f(-2)$ $=-2e^{-2}$ $\approx-0.27$
$W(-2|-0.27)$