Math Natural exponential function Derivatives of exponential functions

Derivatives of exponential functions

When computing the derivative of general exponential functions one uses the natural logarithm.

!

Remember

$f(x)=a^x$

$f'(x)=a^x\cdot\ln(a)$

Example

$f(x)=2^x$
$f'(x)=2^x\cdot\ln(2)$


When computing the derivative of an exponential function, it shifts along the x-axis.

Derivation

Here the derivation of the phrase is described.

We are looking for the derivative of $f(x)=a^x$

  1. Rewrite as exponential function

    Since the ln-functionis the inverse of the exponential function, the following applies:

    $x=e^{\ln(x)}$
    $a^x=e^{\ln(a^x)}$

    Now the logarithm law for powers is applied.
    $a^x=e^{x\cdot\ln(a)}$

    $f(x)=a^x=e^{x\cdot\ln(a)}$
  2. Compute the derivative of the exponential function

    $f(x)=e^{g(x)}$
    $f'(x)=e^{g(x)}\cdot g'(x)$

    $f(x)=e^{x\cdot\ln(a)}$
    $f'(x)=e^{x\cdot\ln(a)}\cdot(x\cdot\ln(a))'$

    $\ln(a)$is a constant factor (constant factor rule) and $(x)'=1$

    $f'(x)=e^{x\cdot\ln(a)}\cdot\ln(a)$
  3. Rewrite exponential function

    Apply the method from the first step backwards:

    $a^x=e^{x\cdot\ln(a)}$

    $f'(x)=e^{x\cdot\ln(a)}\cdot\ln(a)$
    $f'(x)=a^x\cdot\ln(a)$