Extrema
The maxima and minima points of a function graph are called extrema.
!
Remember
Necessary criterion
The prerequisite for the existence of extrema is that the first derivative has a zero at this point:$f'(x_E)=0$
Sufficient criterion
Whether it is a maximum, minimum, or neither is dependent on the second derivativeThere is a
- Maximum point, if $f''(x_E)<0$
- Minimum point, if $f''(x_E)>0$
i
Method
- Find derivatives
- Calculate the zero(s) of the first derivative
- Insert zero(s) into the second derivative
- Specify extremas
Example
Find the extrema of the function $f(x)=x^3+2x^2-4x-8$.
-
Find derivatives
$f'(x)=3x^2+4x-4$
$f''(x)=6x+4$ -
Calculate the zero of the derivative
There is a quadratic equation that can be solved e.g. with the PQ formula.
$f'(x)=3x^2+4x-4$
$x_E\Leftrightarrow f'(x_E)=0$
$3x^2+4x-4=0\quad|:3$
$x^2+\frac43x-\frac43=0$
$x_{1.2} = -\frac{p}{2} \pm\sqrt{(\frac{p}{2})^2-q}$
$x_{1.2} = -\frac{2}{3} \pm\sqrt{(\frac23)^2+\frac43}$
$x_{1.2} = -\frac{2}{3} \pm\sqrt{\frac{16}{9}}$
$x_{1.2} = -\frac{2}{3} \pm\frac43$
$x_{E_{1}}=\color{blue}{-2} \quad x_{E_{2}}=\color{green}{\frac23}$ -
Insert zeros into the second derivative
We use the just-determined places of extrema in the second derivation.
$f''(x)=6x+4$
$f''(\color{blue}{-2})=6\cdot\color{blue}{-2}+4=-8<0$
=> There is a maximum at the position $x=-2$
$f''(\color{green}{\frac23})=6\cdot\color{green}{\frac23}+4=8>0$
=> There is a minimum point at the position $x=\frac23$
Note: The calculated values $8$ and $-8$ were just to check if it's a maximum or minimum. They are no longer needed. -
Specify extremas
Maxima and minima points should be specified: Therefore calculate the y-coordinate with the original function.
$f(\color{blue}{-2})$ $=(\color{blue}{-2})^3+2\cdot(\color{blue}{-2})^2-4\cdot(\color{blue}{-2})-8$ $=0$
=> Maximum point: $H(\color{blue}{-2}|0)$
$f(\color{green}{\frac23})$ $=(\color{green}{\frac23})^3+2\cdot(\color{green}{\frac23})^2-4\cdot\color{green}{\frac23}-8$ $ \approx-9.48$
=> Minimum point: $T(\color{green}{\frac23}|-9.48)$