Calculating Zeros
The x-coordinate of the intersection of a graph with the x-axis is called the zero. A zero is thus present exactly when the y-coordinate is zero.
i
Method
- Set function equal to zero ($x_{ N } \Leftrightarrow f(x_N)=0$)
- Solve equation for $x$
Examples
Task: Calculate the zeros of the functions.
$f(x)=x^{ 2 }$
-
Set function equal to zero
$x^2=0$ -
Solve equation for $x$
$x^2=0\quad|\sqrt{}$
$x_{ N }=0$
$g(x)=x^2+1$
-
Set function equal to zero
$x^2+1=0$ -
Solve equation for $x$
$x^2+1=0\quad|-1$
$x^2=-1\quad|\pm\sqrt{}$
$x_{ N }=\sqrt{ -1 }$ => not defined (there is no zero)
$h(x)=x^2-4$
-
Set function equal to zero
$x^2-4=0$ -
Solve equation for $x$
$x^2-4=0\quad|+4$
$x^2=4\quad|\pm\sqrt{}$
$x_{ N1 }=-\sqrt{ 4 }=-2$
$x_{ N2 }=+\sqrt{ 4 }=2$