Math Quadratic functions Calculating Zeros

Calculating Zeros

The x-coordinate of the intersection of a graph with the x-axis is called the zero. A zero is thus present exactly when the y-coordinate is zero.

i

Method

  1. Set function equal to zero ($x_{ N } \Leftrightarrow f(x_N)=0$)
  2. Solve equation for $x$

Examples

Task: Calculate the zeros of the functions.

$f(x)=x^{ 2 }$

  1. Set function equal to zero

    $x^2=0$
  2. Solve equation for $x$

    $x^2=0\quad|\sqrt{}$
    $x_{ N }=0$

$g(x)=x^2+1$

  1. Set function equal to zero

    $x^2+1=0$
  2. Solve equation for $x$

    $x^2+1=0\quad|-1$
    $x^2=-1\quad|\pm\sqrt{}$
    $x_{ N }=\sqrt{ -1 }$ => not defined (there is no zero)

$h(x)=x^2-4$

  1. Set function equal to zero

    $x^2-4=0$
  2. Solve equation for $x$

    $x^2-4=0\quad|+4$
    $x^2=4\quad|\pm\sqrt{}$
    $x_{ N1 }=-\sqrt{ 4 }=-2$
    $x_{ N2 }=+\sqrt{ 4 }=2$