Calculating the intersection
At an intersection, two function graphs intersect.
!
Note
The graphs of two quadratic functions can have two, one or no intersection.
i
Method
- Equate both function equations $X_{ S } \Leftrightarrow f(x)=g(x)$
- Change equation to zero
- Bring the equation into the reduced quadratic equation
- Apply quadratic formula
- Use $x$ in one of the two equations to calculate $y$
Example
Calculate the intersection / intersections of the graphs of $f(x)=-(x+2)^2+1$ and $g(x)=(x+2)^2-1$
-
Equate function equations
$f(x)=g(x)$
$-(x+2)^2+1=(x+2)^2-1$ -
Change equation to zero
$-(x^2+4x+4)+1= x^2+4x+4-1$
$-x^2-4x-4+1= x^2+4x+4-1$
$-x^2-4x-3=x^2+4x+3\quad|+x^2$
$-4x-3= 2x^2+4x+3\quad|+4x$
$-3= 2x^2+8x+3\quad|+3$
$0=2x^2+8x+6$ -
Bring the equation into the reduced quadratic equation
$0=2x^2+8x+6\quad|:2$
$0=x^2+\color{green}{4}x+\color{blue}{3}$ -
Apply quadratic formula
$x_{1,2} = -\frac{\color{green}{p}}{2} \pm\sqrt{(\frac{\color{green}{p}}{2})^2-\color{blue}{q}}$
$x_{1,2} = -2\pm\sqrt{4-3}$
$x_{1,2} = -2\pm\sqrt{1}$
$x_{1,2} = -2\pm1$$x_{1} = -2+1=-1$
$x_{2} = -2-1=-3$ -
Insert $x_{1}$ and $x_{2}$ in one of the two equations
$g(-1)=(-1+2)^2-1=0$
$g(-3)=(-3+2)^2-1=0$ Two intersections:
$S_{1}(-1|0)$ and $S_{2}(-3|0)$