Math Lines in three dimensions Intercepts

Intercepts

The intersections of a line with the coordinate planes $E_{xy}$, $E_{xz}$, $E_{yz}$ are called intercepts.

!

Remember

A line can have 1, 2, 3 or an infinite amount of intercepts.
i

Method

  1. Set corresponding coordinate equal to zero and determine $r$
  2. Insert $r$ in the linear equation to get the intercepts
i

Hint

The planes always have the coordinate zero, which does not appear in the name.
  • $E_{xy}: z=0$
  • $E_{xz}: y=0$
  • $E_{yz}: x=0$

Example

Determine the intercept of the line $g$ with the xy-plane.

$\text{g: } \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$

  1. Determine $r$

    Since it is the plane $E_{xy}$, we set z equal to 0.

    $\begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$

    The row with just one variable (the third) has to be solved for $r$.

    $0=3+6r\quad|-3$
    $-3=6r\quad|:6$
    $r=-0.5$

  2. Determine intercept

    $\text{g: } \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$

    The calculated $r=-0.5$ is used in the linear equation.

    $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + (-0.5) \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ $=\begin{pmatrix} -1 \\ -0.5 \\ 0 \end{pmatrix}$

    The intercept with the xy-plane is at $S_{xy}(-1|-0.5|0)$