Mathe Bruchgleichungen Bruchgleichungen mit mehreren Brüchen

Bruchgleichungen mit mehreren Brüchen

Beim Lösen von Bruchgleichung mit mehreren Brüchen ist ähnlich wie das Lösen von Bruchgleichungen mit nur einem Bruch. Vorher müssen die Brüche jedoch auf einen gemeinsamen Hauptnenner gebracht werden.

!

Merke

Um Brüche auf einen gemeinsamen Nenner zu bringen, multipliziert man den Zähler und Nenner eines Bruches mit den Nennern der anderen Brüche.
i

Tipp

Wenn auf beiden Seiten der Gleichung nur ein Bruch vorhanden ist, ist es sinnvoll, die gesamte Gleichung mit den beiden Nennern der Brüche zu multiplizieren. Dadurch lösen sich die Bruchterme auf.

Beispiel

Löse folgende Bruchgleichung: $\frac{5x}{3x+15}=\frac{5}{6}$

  1. Definitionsmenge bestimmen

    $3x+15=0\quad|-15$
    $3x=-15\quad|:3$
    $x=-5$

    $\mathbb{D}=\mathbb{R}\backslash\{-5\}$
  2. Gleichung nach $x$ umstellen

    Variante 1
    Beide Bruchterme auf einen gemeinsamen Nenner bringen.

    $\frac{5x}{3x+15}=\frac{5}{6}\quad|-\frac{5}{6}$

    $\frac{5x}{\color{blue}{3x+15}}-\frac{5}{\color{green}{6}}=0$
    $\frac{5x}{\color{blue}{3x+15}}\cdot\frac{\color{green}{6}}{\color{green}{6}}-\frac{5}{\color{green}{6}}\cdot\frac{\color{blue}{3x+15}}{\color{blue}{3x+15}}=0$
    $\frac{30x}{6(3x+15)}-\frac{5\cdot(3x+15)}{6(3x+15)}=0$

    $\frac{30x-5\cdot(3x+15)}{6(3x+15)}=0\quad|\cdot6(3x+15)$

    $\frac{30x-5\cdot(3x+15)}{6(3x+15)}\cdot6(3x+15)=0\cdot6(3x+15)$

    $30x-5\cdot(3x+15)=0$
    $30x-15x-75=0$
    $15x-75=0\quad|+75$
    $15x=75\quad|:15$

    $x=5$


    Variante 2 (siehe Tipp)
    Um die Bruchterme aufzulösen wird der Gleichung mit den Nennern der Brüche multipliziert.

    $\frac{5x}{3x+15}=\frac{5}{6}\quad|\cdot6\cdot(3x+15)$

    $6\cdot5x=5\cdot(3x+15)$
    $30x=15x+75=0\quad|-15x$
    $15x=75\quad|:15$

    $x=5$

  3. Ergebnis prüfen

    Überprüfen, ob das Ergebnis in der Definitionsmenge enthalten ist

    $x=5$ ist in der Definitionsmenge $\mathbb{D}=\mathbb{R}\backslash\{-5\}$ enthalten: Die Lösung ist gültig.