Fractional equations with several fractions
Solving a fractional equation with multiple fractions is similar to solving fractional equations with just one fraction. Before that, however, the fractions must be brought to a common main denominator.
Remember
Hint
Example
Solve the following equation: $\frac{5x}{3x+15}=\frac{5}{6}$
-
Determine the domain of a function
$3x+15=0\quad|-15$
$3x=-15\quad|:3$
$x=-5$
$\mathbb{D}=\mathbb{R}\backslash\{-5\}$ -
Change equation to $x$
Version 1
Bring both fractions to a common denominator.$\frac{5x}{3x+15}=\frac{5}{6}\quad|-\frac{5}{6}$
$\frac{5x}{\color{blue}{3x+15}}-\frac{5}{\color{green}{6}}=0$
$\frac{5x}{\color{blue}{3x+15}}\cdot\frac{\color{green}{6}}{\color{green}{6}}-\frac{5}{\color{green}{6}}\cdot\frac{\color{blue}{3x+15}}{\color{blue}{3x+15}}=0$
$\frac{30x}{6(3x+15)}-\frac{5\cdot(3x+15)}{6(3x+15)}=0$$\frac{30x-5\cdot(3x+15)}{6(3x+15)}=0\quad|\cdot6(3x+15)$
$\frac{30x-5\cdot(3x+15)}{6(3x+15)}\cdot6(3x+15)=0\cdot6(3x+15)$
$30x-5\cdot(3x+15)=0$
$30x-15x-75=0$
$15x-75=0\quad|+75$
$15x=75\quad|:15$$x=5$
Version 2 (See hint)
In order to resolve the fraction terms, the equation is multiplied by the denominators of the fractions.$\frac{5x}{3x+15}=\frac{5}{6}\quad|\cdot6\cdot(3x+15)$
$6\cdot5x=5\cdot(3x+15)$
$30x=15x+75=0\quad|-15x$
$15x=75\quad|:15$$x=5$
-
Check result
Check if the result is included in the domain
$x=5$ is contained in the domain $\mathbb{D}=\mathbb{R}\backslash\{-5\}$: The solution is valid.