Vector equation of a plane
Alternatively, a plane can be described using a point and a vector perpendicular to the plane, called normal vector.
The vector equation of a plane has the following form:
- $\vec{a}$ is the position vector
- $\vec{n}$ is the normal vector
Parametric equation → Vector equation
Method
- Adopt the position vector from the parametric equation
- Calculate the normal vector
- Option 1: Use the scalar product
- Option 2: Use the cross product
- Insert position vector and normal vector
Hint
Example
$\text{E: } \vec{x} = \color{green}{\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}} + r \cdot \color{blue}{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}}$ $+ s \cdot \color{blue}{\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}}$
Position vector
$\vec{a}=\color{green}{\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}}$-
Normal vector
Option 1
Since both direction vectors are perpendicular to the normal vector $\vec{n}=\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, the scalar product must result in zero.
- $\begin{pmatrix} x \\ y \\ z \end{pmatrix}\cdot\color{blue}{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}} = 0$
- $\begin{pmatrix} x \\ y \\ z \end{pmatrix}\cdot\color{blue}{\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}} = 0$
The scalar product can now be calculated.
- $1x+1y=0$
- $1x+5y+2z= 0$
II.-I.
$4y+2z=0$
Choose $z$ freely, e.g. $z=4$
$4y+8=0\quad|-8$
$4y=-8\quad|:4$
$y=-2$Calculate $x$ using I. (insert $y$)
$x+y=0$
$x-2=0\quad|+2$
$x=2$$\vec{n}=\begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$
Option 2
Now we only calculate the cross product of the vectors.
$\vec{n}$ $=\color{blue}{\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}} \times \color{blue}{\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}}$ $=\begin{pmatrix} 1\cdot2 - 0\cdot5 \\ 0\cdot1 - 1\cdot2 \\ 1\cdot5 - 1\cdot1 \end{pmatrix}$ $=\begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$ Insert
$\text{E: } (\vec{x} - \vec{a}) \cdot \vec{n}=0$$\text{E: } \left(\vec{x} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}\right) \cdot \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}=0$
Vector equation → parametric equation
Method
- Adopt the position vector of the vector equation
- Use scalar product to determine the direction vector
- Insert position vector and direction vector
Hint
Example
$\text{E: } \left(\vec{x} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}\right) \cdot \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}=0$
Position vector
$\vec{a}=\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$-
Direction vector
Using the normal vector we can determine both direction vectors needed for the parametric equation.
1. Direction vector
A vector must be found with which the scalar product results in zero.
$\begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}\cdot\color{blue}{\begin{pmatrix} \, \\ \, \\ \, \end{pmatrix}} = 0$
It is particularly easy to replace the first coordinate with 0 and then swap the other two coodinates and to change a sign.
$\begin{pmatrix} 2 \\ \color{red}{-2} \\ \color{red}{4} \end{pmatrix}\cdot\begin{pmatrix} 0 \\ \color{blue}{-4} \\ \color{blue}{-2} \end{pmatrix} = 0$
$\vec{u}=\begin{pmatrix} 0 \\ -4 \\ -2 \end{pmatrix}$
2 Direction vector
$\begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}\cdot\color{blue}{\begin{pmatrix} \, \\ \, \\ \, \end{pmatrix}} = 0$
Here the last coordinate needs to be replaced with 0 and the other two coordinates need to be switched and a sign is changed.
$\begin{pmatrix} \color{red}{2} \\ \color{red}{-2} \\ 4 \end{pmatrix}\cdot\begin{pmatrix} \color{blue}{-2} \\ \color{blue}{-2} \\ 0 \end{pmatrix} = 0$
$\vec{v}=\begin{pmatrix} -2 \\ -2 \\ 0 \end{pmatrix}$
Insert
$\text{E: } \vec{x} = \vec{a} + r \cdot \vec{u} + s \cdot \vec{v}$$\text{E: } \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ -4 \\ -2 \end{pmatrix}$ $+ s \cdot \begin{pmatrix} -2 \\ -2 \\ 0 \end{pmatrix}$