Hesse normal form
A special type of normal equation is the Hesse normal form:
Remember
$|\vec{n_0}|=1$
For the unit normal vector, the normal vector is divided by its magnitude.
The Hesse normal form is obtained by dividing the vector equation of the plane by the magnitude of the normal vector.
Example
$\text{E: } \left(\vec{x} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}\right) \cdot \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}=0$
-
Absolute value of the normal vector
$\vec{n}=\begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$
$|\vec{n}|=\sqrt{2^2+(-2)^2+4^2}$ $=\sqrt{24}$
-
Unit normal vector
$\vec{n_0}= \frac{\vec{n}}{|\vec{n}|}$
$\vec{n_0}= \frac{ \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}}{\sqrt{24}}$ $=\frac{1}{\sqrt{24}}\cdot \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$ $=\begin{pmatrix} 2/\sqrt{24} \\ -2/\sqrt{24} \\ 4/\sqrt{24} \end{pmatrix}$
-
Hesse normal form
$\text{E: } (\vec{x} - \vec{a}) \cdot \vec{n_0}=0$
$\text{E: } \left(\vec{x} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}\right) \cdot \begin{pmatrix} 2/\sqrt{24} \\ -2/\sqrt{24} \\ 4/\sqrt{24} \end{pmatrix}=0$
Alternatively, the following notation is also possible:
$\text{E: } \left(\vec{x} - \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}\right) \cdot \frac{1}{\sqrt{24}}\cdot \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}=0$