Math Solve equations Substitution

Substitution

Biquadratic equations are special 4th degree polynomial equations of the form:

$ax^4+bx^2+c=0$

Biquadratic equations can be converted into quadratic equations by substitution $x^2=z$.

i

Hint

The quadratic equation resulting from the substitution can be solved with the quadratic formula.

Example

Solve the biquadratic equation: $x^4-3x^2+2=0$

  1. Substitution

    The given equation is substituted by replacing $x^2$ with $z$.
    $x^4-3x^2+2=0$

    $z=x^2$
    $z^2-3z+2=0$
  2. Solve the quadratic equation

    The new quadratic equation can now be solved e.g. with the pq-formula.
    $z^2-3z+2=0$

    $z_{1,2} = \frac{p}{2} \pm\sqrt{(\frac{p}{2})^2-q}$

    $z_{1,2} = \frac32 \pm\sqrt{(\frac32)^2-2}$
    $z_{1,2} = \frac32 \pm\sqrt{\frac14}$
    $z_{1,2} = \frac32 \pm\frac12$

    $z_1=2$ and $z_2=1$
  3. Backward substitution

    Now you can calculate $x$ from the solutions for $z$.
    To do this, we take the original equation and transform it:

    $x^2=z\quad|\pm\sqrt{}$
    $x=\pm\sqrt{z}$

    Use both z-values.
    $x_{1,2}=\pm\sqrt{z_1}$
    $x_1=\sqrt{2}\approx1.41$
    $x_2=-\sqrt{2}\approx-1.41$

    $x_{3,4}=\pm\sqrt{z_2}$
    $x_3=\sqrt{1}=1$
    $x_4=-\sqrt{1}=-1$