Logarithm
If you use logarithm, the exponent is determined using the base and the potency value.
$b^\color{red}{x}=a\Leftrightarrow \color{red}{x} = \log_b(a)$
(say: Logarithm of a to base b)
$x ...$ the exponent
$b ...$ the base
$a ...$ the potency value
!
Remember
For $\log_b{a}=x$ the following applies:
$a, b > 0$ and $b\neq1$
$a, b > 0$ and $b\neq1$
Example: $2^3=8$ and the logarithm of 8 to base 2 is: $\log_2 8=3$.
The brackets in logarithms can be left out if there are no misunderstandings e.g. $\log_2 8$ instead of $\log_2 (8)$
i
Hint
- If you use exponentiation, you search the potency value:
$b^n=\color{red}{x}$ - If you useroot extraction, you search the base:
$\color{red}{x}^n=a$ - If you use logarithms, you search the exponent:
$b^\color{red}{x}=a$
Example
- $\log_3(81)=4$, because $3^4=81$
- $\log_5(-25)=\text{not defiened}$
- $\log_4(\frac{1}{16})=-2$, because $4^{-2}=\frac{1}{16}$