Special exponent laws
In addition to the actual exponent laws, there are a few more special cases.
Negative base
if $x$ is straight: $(-a)^x=a^x$
if $x$ is odd: $(-a)^x=-(a^x)$Negative exponents
$a^{-x}=\frac{1}{a^x}$Fractions in exponents
$a^{\frac{m}{n}}=\sqrt[n]{a^m}$
Examples
- $(-5)^2=5^2=25$
$(-2)^3=-(2^3)=-8$ - $6^{-2}=\frac{1}{6^2}$ $=\frac{1}{36}$
- $2^\frac43=\sqrt[3]{2^4}$