Mixed quadratic equations
A mixed quadratic equation is an equation in the form:
$x^2+px+q=0$
Mixed quadratic equations can be solved with the help of completing the square.
i
Method
- If a coefficient is before the $x^2$, it must be excluded beforehand, for example:
$2x^2+4x=8$
$2(x^2+2x)=8$ -
Completing the square on both sides of the equation
$x^2+px\color{red}{+(\frac{p}{2})^2}=-q+\color{red}{(\frac{p}{2})^2}$ - Apply binomial formula backwards $(x+\color{red}{\frac{p}{2}})^2=-q+\color{red}{(\frac{p}{2})^2}$
- Calculate square root and put $x$ on one side
Example
-
Determine $p$:
$x^2+20x=-19$
$p=20$ -
Completing the square $+(\frac{p}{2})^2$:
$x^2+20x=-19\quad|+\color{red}{10^2}$
$x^2+20x+\color{red}{10^2}=-19+\color{red}{10^2}$ -
Apply binomial formula backwards and calculate square root
$(x+10)^2=81\quad|\pm\sqrt{}$ -
Put $x$ alone on one side of the equation
There are two solutions (one positive and one negative square root)
$x+10=9\quad|-10$
and
$x+10=-9\quad|-10$ - $x_1=-1$ and $x_2=-19$