Math Derivative rules Quotient rule

Quotient rule

To derive a quotient, use the quotient rule.

!

Remember

$f(x)=\frac{g(x)}{h(x)}$

$f'(x)=\frac{\color{red}{g'(x)}\cdot h(x) -\color{red}{h'(x)}\cdot g(x)}{(h(x))^2}$

Example

$f(x)=\frac{x}{x+1}$

  1. Split function into subfunctions

    $g(x)=x$ and $h(x)=x+1$
  2. Derive subfunctions

    $g'(x)=\color{blue}{1}$ and $h'(x)=\color{green}{1}$
  3. Insert

    $f'(x)=\frac{\color{blue}{g'(x)}\cdot h(x) -\color{green}{h'(x)}\cdot g(x)}{(h(x))^2}$

    $f'(x)=\frac{\color{blue}{1}\cdot (x+1) -\color{green}{1}\cdot x}{(x+1)^2}$ $=\frac{1}{(x+1)^2}$